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Abstract

In this paper, we introduce ordinary least-square regression analysis as the first
approach to analyzing a real-world time series data set. We will then demonstrate
that the use of regression analysis on autocorrelated time series could be problematic
because the independent and identically distributed assumption of residuals is violated
in our real world data set. Then we introduce the technique of prewhitening and apply
it to a simulated data set. With the use of the prewhitening technique on the simulated
data set, we show that we can correct the rate of detecting spurious relationships from
around 40 percent to the correct significant level (0.05) at the sacrifice of statistical
power.
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1 Introduction

In today’s data-rich society, data has become the competitive edge that can mean the differ-
ence between success and failure. How do we transform data into meaningful information? It
would be beneficial if we could determine the correlation between variables and extract useful
statistics to understand how the world runs. When deciding whether there is a correlation
between two variables, the ordinary regression model is the first instinct for many people.
However, how do we know if the relationship we found is true or spurious? A spurious re-
lationship is a significant correlation in which two or more variables are statistically related,
when in fact, more nuanced tests show they are not[Bur97].

In real life, an immense amount of data is time series data. One definition of time series
is a sequence of observations taken sequentially in time[Box15].In the field of economics, we
witness daily closing stock prices, monthly price indices, and yearly sales records. In nature,
we observe monthly accumulated precipitation, average daily temperatures, and hourly wind
speeds[CC11]. It is a common tendency for many people to do regression analysis on time
series data, with or without acknowledging that many time series are highly autocorrelated.
For example, the temperature of today is strongly correlated to the temperature of yesterday
and the temperature of tomorrow will be strongly correlated to the temperature of today.
In this paper, we will demonstrate the consequence of ignoring autocorrelation in time series
data sets. We will first explain the concepts and terms in regression and time series. Then we
will use real-world data, the Beijing PM2.5 data set, to show that using regression analysis on
an autocorrelated time series can be problematic. Then, we will demonstrate the advantage
of using time series analysis and the technique of prewhitening on a simulated data set.
The results of the data set show us the severe consequence of modeling two autocorrelated
time series. The results also show that we can avoid the server consequence by using the
prewhitening technique with a long time series data.

2 Methodology

To understand the logic and to prepare to understand Sections 3 and 4 of this paper, it is
essential to review the core concepts in regression analysis and time series analysis. This
crucial information will provide a foundation for sections 3 and 4. In Section 3, we will use
real-world data to demonstrate that the relationship found by regression modeling on highly
autocorrelated data could result in a spurious correlation even if it is statistically significant.
In section 4, we will use R to simulate autocorrelated data and test the rate of Type I errors
and Type II errors before and after the method of prewhitening, which will be explained
in section 2.2.8. In the following sections, therefore, we will first go over the core material
of Ordinary Least-Square Regression then explain the essential information for time series
analysis and modeling.
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2.1 Ordinary Least-Square Regression

2.1.1 Ordinary Least-Square Regression Definition

In the book Regression Analysis by Example, the authors defined ordinary Least-Square as
a data set consists of n observations on a dependent or response variable Y and p predictors
or explanatory variables, X1, X2, . . . , Xp. The meaning of the notation of Y and X1 is shown
below, where {1, 2, . . . n} are the observation numbers.

Y =


y1
y2
...
yn

X1 =


x11
x12
...
x1n


The relationship between Y and X1, X2, . . . , Xp is formulated as a linear model shown in
equation 1, where β0, β1, β2, ..., βp are the regression parameters and ε is assumed to be a
random error.

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (1)

This model assumes that, with the set of fixed values of X1, X2, , Xp that fall within the range
of the data, if the standard regression assumptions are satisfied, the equation above provides
an approximation of the true relationship between Y and Xs[CH13].

If we only estimate the relationship between one response variable and one predictor
variable, we will use simple linear regression, which is one type of ordinary least-square
regression. The following equation illustrates the model.

Y = β0 + β1X1 + ε (2)

The best fitted yi = β0 + β1x1i + εi will not be the same as the observation values. In order
to estimate the ”accurateness” and ”goodness” of the fit, we often need to calculate the
residuals. Residual, denoted as εi, is the ith observation value minus the ith fitted value. In
the form of mathematical symbol, εi = yi − β0 + β1ixi[CH13].

2.1.2 The Standard Regression Assumption

The properties of least squares estimators and the statistical analysis of multiple linear re-
gression based on four assumptions.

1. The first assumption is the linearity assumption which holds that the relationship
between response variables and predictor variables is assumed to be linear with the
regression parameter β0, β1, β2...βp. When the linearity assumption is violated, the
transformation of the data can sometimes lead to linearity.

2. The second assumption is that the errors are independently and identically distributed(iid)
normal variables each with mean zero and a constant variance. In other words, the er-
ror terms of the model must contain no trend for determining Y that is not already
captured by the Xs.
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3. The third assumption is about predictors: the predictor variable must be nonrandom,
the values must be measured without error, and predictor variables must be independent
of each other..

4. The fourth assumption is that all observations should serve an equally important role
and be equally reliable when determining the results and conclusions[CH13].

For time series data, the second assumption that errors must be iid is often violated
because the variables are correlated with themselves over time. We will then discuss the time
series analysis. Then we use time series analysis as a tool to disentangle the autocorrelated
properties with real-world data and to investigate the degree of severity of autocorrelated
data with simulated data.

2.2 Time Series Analysis

2.2.1 The Sample Auto-correlation Function(ACF) and The Sample Partial Au-
tocorrelation Function(PACF)

The sample autocorrelation function is an essential diagnostic tool for examining dependence
in data. The sample autocorrelation function is defined as, rk, at lag k, as shown in equation 3.
The Sample Autocorrelation Function asses how the observations in a time series are related
to each other, and is calculated by a simple correlation between the current observation Yt
and the observation k periods away, Yk. The following equation illustrates the function.

rk = Corr(Yt, Yt−k) =

n∑
t=k+1

(Yt − Ȳ )(Yt−k − Ȳ )

n∑
t=1

(Yt − Ȳ )2
(3)

In general, we consider any | rk |≥ 2√
n

to be statistically significant[CC11].
The partial autocorrelation function is the autocorrelation between Yt and Yt−k given

the effects of the variables in between t and t − k. The following equation illustrates the
function[CC11].

φkk = Corr(Yt, Yt−k | Yt−1, Yt−2, . . . , Yt−k−1) (4)

We try to predict monthly pollution(PM2.5) in Beijing using the monthly temperature.
The first approach is using a simple linear regression model to forecast. The details of the
model are in Section 3. Figure 1 gives ACF for monthly averages of hourly temperature. Our
null hypothesis is that the temperature is not autocorrelated. Because the black lines are
much over the blue dash line at the majority of legs, we can reject our null hypothesis at those
legs. The graph concludes that this temperature time series is significantly autocorrelated.
In fact, we can see a strong seasonality trend. Figure 2 gives the PACF of the residuals
of the regression model. The existence of significant autocorrelation patterns at lag 6 and
10 indicates that the residuals are serially dependent. The dependence of the errors is a
violation of the second assumption of the Ordinary Least-Square Regression Model that the
error terms must be iid. To predict the level of pollution with appropriate methods, we will
introduce time series and time series modeling.
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Figure 1: ACF of Temperature Time Series

Figure 2: PACF of the Residuals of a Regression Model

2.2.2 Time Series Definition and the Stationary Assumption

Time series is a type of data obtained from observations that are collected chronologically
over time. A stochastic process is a random sequence of variables Yt : t = 0,±1,±2,±3
changing with time. To make statistical extrapolations about the structure of a stochastic
process on the foundation of an observed record of that process, we must make simplifying
assumptions, including the most important stationary assumption.The definition of strictly
stationary and weakly stationary is defined as

“A process {Yt} is said to be strictly stationary if the joint distribution of
Yt1 , Yt2 , . . . , Ytn is the same as the joint distribution of Yt1k, Yt2k, . . . , Ytnk for all
choices of time points t1, t2, tn and all choices of time lag k”[CC11].
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A stochastic process {Yt} is weakly (or second-order) stationary if
the mean is constant over time

rt,t−k = r0,k , for all time t and lag k

That is to say that the mean shall be constant regardless of time and co-variance must only
depend on the distance between the two observations[CC11]. For the rest of this paper, the
term stationary will always be referring to weakly stationary.

Stationary requires constant mean over time. When a time series contains a trend or
trends, it is not stationary. Trends can be linear, quadratic, cyclic or seasonal. A seasonal
time series is a time series that displays a very periodic pattern. In particular, seasonality
for monthly value is the observed data regularly alter in the twelve months or other time
intervals[CC11]. When a time series has a trend, it is not stationary and violates our as-
sumption for time series analysis. We will talk about how to resolve this problem in Section
2.2.4. Figure 1 showed an example of a non-stationary seasonal time series.

2.2.3 The Cross-correlation Function(CCF)

The sample cross-correlation function is a useful tool for determining the degree of significance
of cross-correlation.Let Y = {Yt} be time series of the response variable and X = {Xt}
be a covariate time series variable. For jointly stationary processes, the theoretical cross-
correlation function(CCF) between X and Y at lag K is defined as

ρk(X, Y ) = Corr(Xt, Yt−k) = Corr(Xt+k, Yt) (5)

When Y = X, the cross-correlation is the same the the autocorrelation of Y at lag k. In
practice, the sample cross-correlation function can be asses using the function[CC11].

rk(X, Y ) =

∑
(Xt − X̄)(Yt−k − Ȳ )√∑

(Xt − X̄)2
√∑

(Yt − Ȳ )2
(6)

Figure 3: CCF of Temperature and PM2.5

Let us look at the example of CCF in Figure 3. Figure 3 displays the strong cross-
correlation between temperature and PM2.5 at many lags. This nonstationarity in the two
time series might cause non-independent errors and possibly lead to a spurious relationship.
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2.2.4 Moving Average Processes, Autoregressive Processes and Differencing

A moving average model is a model such that Yt depends only on the random error terms[CC11].
1,−θ1,−θ2, ...,−θq are the coefficients for the variable and the error terms. et, et−1, et−2et−q,
are the variable. In other words, Yt is a linear function of the p most recent error terms.The
error term et are assumed to be white noise processes with zero mean and constant variance.

Yt = et − θ1et−1 − θ2et−2 − ...− θqet−q (7)

Autoregressive processes are regressions depends only on its past value Yt−1, Yt−2, Yt−3Yt−p.
The book defines a pth-order autoregressive process Yt as:

Yt = φ1Yt−1 + φ2Yt−2 + + φpYt−p + et (8)

Many real-life time series cannot be practically modeled by stationary processes such as the
AR and MA because they have trends and are altering over time. We can eradicate or
reduce the trend and seasonality by differencing. In this way, we can sometimes transform
non-stationary time series into stationary time series. B is denoted for the backshift operator
and was commonly used to express and manipulate ARIMA models. Especially, BYt = Yt−1.
The first differencing can be defined in terms of B as

∆Yt = Yt − Yt−1 = YtBYt = (1−B)Yt (9)

2.2.5 ARIMA(p,d,q) Model

The ARIMA model is a combination of Autoregressive (AR) Model in order p, differencing
with order d and Moving Average(MA) Model with order q. The technique to determine the
best ARIMA model firstly estimates the coefficient for p,d,q and check its adequacy. We can
choose our model type approximately by the general behavior of the ACF and PACF. The
sample partial autocorrelation function is used to asses whether an AR(p) model is correct.
Cryer and Chan state in their book that ”Quenoulle has shown, under the hypothesis that
an AR(p) model is correct, the sample partial autocorrelation at lags greater than p are
approximately normally distributed with zero means and variances 1/n. Thus, for k > p,
±2/
√
n can be used as critical limits to test the null hypothesis that an AR(p) model is

correct[CC11].
Table 1, extracted on page 116 in Time series analysis with applications in R, also shows

the criteria to select proper ARIMA model using ACF and PACF. In model selection, we
want to choose the model with the minimum AIC to avoid overfitting[CC11].

Table 1: The criteria to select the model using ACF and PACF
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2.2.6 Seasonal ARIMA Model

A seasonal AR(P)model of order P with seasonal period s is given as following.

Yt = et + Φet−s + Φet−2s + . . .+ Φet−Qs (10)

A seasonal MA(Q) model of order Q with seasonal period s is given as follows.

Yt = et −Θ1Yt−s −Θ2Yt−2s − . . .−ΘQYt−Qs (11)

The use of AR and MA explicitly assumes weak stationary. When a time series exhibits a
seasonal trend, it is not stationary. However, we can resolve that by an essential and common
tool, the seasonal difference. s denotes as a seasonal period. For example, s = 12 for monthly
series. The seasonal difference of period s for the series Yt is denoted OsYt and is defined as
following[CC11].

OsYt = Yt − Yt−s (12)

2.2.7 Akaikes Information Criterion (AIC)

AIC stands for Akaikes Information Criterion and acts as a safeguard against overfitting.
This criterion says to select the best model by minimizing AIC, where k = p + q + 1 if
the model contains an intercept or constant term and k = p + q else. p is the pth order of
Autoregressive model and q is the qth order of the Moving Average model. The equation
of AIC is shown in the following equation. The likelihood function is the joint probability
density of obtaining the data observed[CC11].

AIC = −2log(Maximum Likelihood) + 2k (13)

The addition of the k serves as a punishment to help select the simplest models and
avoid choosing a model with too many parameters. Maximum likelihood is a measure of the
goodness of model fit. The higher value of maximum likelihood indicates a better model fit.
The lower the AIC, the better the fit.

2.2.8 Prewhitening and Spurious Relationship

Spurious relationship happened when two variables exhibit a significant correlation without
an underlying connection. For time series objects, there is a common tendency to be au-
tocorrelated since what happened yesterday usually influences what will happen today. It
is difficult to assess dependence between two strongly autocorrelated data sets because the
degrees of freedom are related to the number of independent observations. Higher autocor-
relation means a lower effective sample size. Also, when the independent and identically
distributed assumption of residuals is violated, error rates are different from the specified
significance level. In section 4, we will use simulated autocorrelated data to show the severe
result of ignoring autocorrelation in time series objects with regression modeling.

A way to solve this dilemma is to disentangle the trend association between X and Y,
from their autocorrelation. A useful strategy for disentangling is prewhitening the data with
a suitable ARIMA model. In other words, we transformed the data to approximately random
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process by replacing the data by the residuals from a fitted ARIMA model.X̃ is defined as a
white noise process which is sequentially uncorrelated, has zero mean and constant variance
over time. Prewhitening is the process of transforming the X’s to X̃ via filer π(B), and the
same filter also applied to Y[CC11].

3 Example 1: Real World Data: Climate Change And

Air Pollution

Spurious relationships readily occur in statistics. However, they are not often detected by
society. Booming urbanization and industrialization among the world might plausibly raise
many problems of air pollution, putting humans at risk of new health problems and encour-
aging people to pay attention to air pollution. Air pollution results from the combination
of excessive emissions and hostile weather, just as air quality strongly relies on weather and
therefore might be sensitive to climate change[JW09]. Pm2.5, known as fine particulate mat-
ter, is defined as particles or droplets in the air that have a diameter of 2.5 microns or less.
The particulate matter is the major contributing factor to poor air quality and has been
connected many times to increases in mortality [DPX+93].

To asses the correlation between two time series objects, in this section, we focus on
assessing the relationship between the concentration of particulate matter 2.5(PM2.5) and
temperature. We will first use the common technique of ordinary least-square regression to
model the level of particulate matter 2.5 and temperature. Then, we use time series modeling
and prewhitening to diagnose the true relationship between them further.

The hourly data set, which includes the period between Jan 1st, 2010 to Dec 31st, 2014,
contains the concentration of PM2.5 data and the temperature of Beijing. This data set
downloaded from the UCI Machine Learning Repository. The website acknowledged Song Xi
Chen as the source of the Beijing PM2.5 data set. Out of the 43824 hourly data of concentra-
tion of PM2.5, we have 2067 missing data, possibly due to a power outage, detection machine
maintenance or unknown factors. To minimize the impact of missing data, we process the
data from hourly data to monthly averages of hourly data before fitting any model.

Figure 4 shows the two time series plot the monthly average of hourly particular matter
2.5 concentration(ug/m3) and the monthly average of hourly temperature in Celsius.

Table 2 shows the coefficients of the ordinary least-square regression modeling with re-
sponse variable the monthly average of hourly PM2.5 concentration (ug/m3) and explanatory
variables the monthly average of hourly of temperature (Celsius). The intercept coefficients
in this model predict the monthly average of hourly PM2.5 concentration (ug/m3) when the
monthly average of hourly temperature (Celsius) is equal to 0. The slope value represents
the expected change in per ug/m3 with per (Celsius) unit increase in the monthly average
of hourly of temperature. The null hypothesis for this model is Ho 6= 0, which means that
there is no significant relationship between PM2.5 and temperature. In this case, the very
small p-value for both intercept and temperature indicates robust evidence again the null
hypothesis, so we reject the null hypothesis. In other words, we have strong evidence that
per unit increase in temperature decrease the level of pollution in term of the concentration
or particular matter 2.5.
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Figure 4: Time series plots of PM2.5 and Temperature

Table 2: Coefficients of regression summary

In Figure 5, the sample autocorrelation function for the standardized residuals to assess
the possible dependence in the data set. All values are within the horizontal dashed lines
except there seem to be a significant value at lag 6, which placed at zero plus and minus two
approximate standard errors of the sample autocorrelation, namely ±2/

√
n. The significant

value at lag 6 indicates a violation of the second assumption of regression modeling. The
residual plot also shows that the error is almost randomly distributed with zero 0 but seems
to show some seasonality, which might be a violation of our regression model. The histogram
and qq-plot show that the residuals mostly follow a normal distribution with possibly a minor
left-skew. Since the ACF and the residuals plot show possible violations of the iid assumption
of residuals. Let us take a step further to look at the partial autocorrelation function of the
residuals. The PACF of residuals of our regression model, shown in Figure 1, indicates the
existence of significant autocorrelation patterns at lag 6 and 10, which shows the residuals are
serially dependent. The dependency of error terms violates the iid assumption of residuals.

In summary, the correlation of temperature and PM2.5 is valid and significant when we
are looking at the coefficients of regression summary and skim through the residuals plot,
histogram, and qq-plot. However, the more nuanced analysis on the residuals shows possible
violations to our regression assumption. When we look at PACF and ACF of the residuals,
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Figure 5: Residual Analysis

the regression assumption of residuals is violated. The residual plot also shows possible
seasonality. We should not limit ourselves to coefficients of regression, residuals plot, qq-
plot, and histogram when our data are time series. It is essential to look at ACF and
PACF of residuals when doing residuals analysis for regression modeling. To find the actual
relationship between these two variables, we will fit a seasonal ARIMA model to prewhite
our time series data temperature and PM2.5.

In Figure 3, the sample CCF of Temperature and PM2.5, calculation shows that these
series have a significant cross-correlation coefficient at lag 0,1,6 and 7 that is statistically
significantly different from zero. However, it is possible that the seasonal trends that found
in both temperature and PM2.5 time series cause spurious correlations. Since it is difficult
to validate dependence between two strongly autocorrelated, we will prewhitening our data
set by prewhitening our data set with the best fit seasonal ARIMA model of temperature by
looking at the ACF and PACF and minimizing the AIC.

Figure 1 shows the sample autocorrelation of the monthly averages of hourly temperature.
We see strong seasonality and strong autocorrelation in it. To meet the assumption of
stationary and do ARIMA modeling, we will use differencing to remove the trends.

Figure 6 shows the sample autocorrelations of the monthly averages of hourly temperature
after three different differencing. The first graph shows the ACF for temperature after the
1storder of differencing. Almost all lags are outside of the significant dash line which still
violating the assumption of independence. For the ACF for temperature after the 1st order
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Figure 6: The the sample autocorrelation of temperature after there different differencing

of seasonal differencing, we can see that lag 1 and lag 12 are significant. Lag 1 to lag 12 still
shows some autocorrelation. Since almost all value of lag 2 to lag 11 are within the dashed
line of significant, the 1st order of seasonal differencing is acceptable. For the ACF after
the 1st order of differencing and the 1st order of seasonal differencing, lag 2, 10 and 12 are
significant. We can barely recognize any autocorrelation. This type of differencing is also
satisfactory. There is not much of improving by adding a simple differencing to a seasonal
differencing. To avoid over differencing, it is appropriate and reasonable to choose the 1st

order of seasonal differencing.

Figure 7: PACF for temperature after 1th order of seasonal differencing

Figure 7 shows PACF for temperature after 1st order of seasonal differencing. ACF tails
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off gradually to 0 while PACF cuts off. According to Figure 8, an AR(p) model should be
select.

Table 3 shows the AIC for 24 different ARIMA models. AIC is defined in section 2.2.5
and is stand for Akailkes Infromation Criterion to estimate the model fit. The lower the AIC,
the better the fit.

Table 3: The AIC for different ARIMA models

The first order of seasonal differencing is good enough in this case. By selecting the lowest
AIC with first order of seasonal differencing, we get ARIMA(1, 0, 0) × Seasonal(0, 1, 1).
Figure 13 and Figure 14 show the ACF and PACF for temperature after the first order of
seasonal differencing. ACF tails off gradually to 0 while PACF cuts off. According to figure
8, an AR(p) model should be selected. So, this model selection makes sense, and we will use
this model to prewhiten our data.

Figure 8 shows the CCF for temperature and concentration of PM2.5 after prewhitening.
The calculation indicates that these series do not correlate with lag 0. When calculating the
CCF, we are also conducting many tests simultaneously, so it is reasonable to ignore small
correlations. Thus, it seems that the monthly average of hourly temperature and the monthly
averages of the concentration of hourly particular matter 2.5 are mostly uncorrelated, and
the strong cross-correlation pattern found between the raw data series might be spurious.

Figure 8: The sample CCF of PM2.5 and temperature
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4 Example 2: Simulated Data

For statistical hypothesis testing, it is always possible to make systematic mistakes. While
there is no way to eliminate receiving errors, we can always do what we can to control the
rate of errors at the expected level. In general, there are two types of errors, TYPE I error
and TYPE II error. TYPE I error is rejecting a true null hypothesis while the TYPE II error
is failing to reject a false hypothesis. The goal of this section is to control the rate of Type I
error. TYPE I specified by the significance level (alpha), and if all assumptions are met then
the type I error rate should be equal to alpha.

Table 4: TYPE I and TYPE II error in statistic

In section 2.2.8, we mentioned that prewhitening is a powerful tool to detect a poten-
tial spurious relationship. In this example, we will use the ARIMA model simulation in
R to generate correlated and uncorrelated time series. Then, we test the rate of TYPE I
error and TYPE II error before prewhitening and after prewhitening with different sample
sizes and sample standard deviations. The codes are obtained from Dr. Maureen Kennedy
(mkenn@uw.edu). We will demonstrate that the rate of TYPE I error can be reduced im-
mensely by the technique of prewhitening and be corrected to the significant level. The codes
for the process is in Appendix B. The simulation process is explained in next paragraph and
also in Figure 9.

For each simulation, we use the R function arima.sim to simulate two time series with size
n and standard deviation d, namely X and Y. X and Y should be two uncorrelated time series
since they generate randomly by the arima.sim function. Afterward, we perform hypothesis
testing between X and Y with a 0.05 significance level. Since X and Y are uncorrelated, we
should see a type 1 error at a rate of 0.05. If H0 is rejected, we save 1 in an array, save 0
otherwise. Second, we create Y2 and let Y2 = 0.5X + 10 + ε, where ε is independent and
identically distributed error with zero mean and standard deviation d. X and Y2 should be
closed correlated. the same time series. Afterward, we perform hypothesis testing between X
and Y2 with 0.05 significant level. In this case, rejecting null hypothesis is a correct decision,
and the error rate of interest is the type 2 error. The rate at which the correct decision is
made is the statistical power of the test. If H0 is rejected, we save 1 in an array; we save 0
otherwise. Thirdly, we prewhiten the data and repeat hypothesis testing, X and Y and X
and Y2, saving the results in arrays. Finally, we repeat the simulation 500 times. Afterward,
we summed each array and divided them by 500. In this way, we get the rate of TYPE I
error and power before and after prewhitening. We can easily calculate the rate of TYPE
II error by using 1-Power. We repeat this process over and over again at increasing sample
size (n) and increasing the standard deviation(sd). The results are displayed in Table 5 and
Table 6.
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Figure 9: Simulation Process

Table 5: The rate of TYPE I and TYPE II error before and after prewhitening with different
sample size
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In the result of Table, our rate of type 1 error is much higher than the specified significance
level Before pre-whitening. The simulated data demonstrate that all the rate of Type I error
became close to our specify significance level, 0.05, after prewhitening. However, the rate of
Type II error increases after prewhitening. As the sample size increases, the rate of TYPE
II error decreases. This example shows that by using the prewhitening technique, we can
effectively reduce the chance of making TYPE I error and make a more reliable decision
base on the existed data set at the sacrifice of statistical power. By prewhitening, we detect
spurious relationships at the correct rate(TYPE I error), but we are then more likely to miss
any truly significant relationships.

Table 6: The rate of TYPE I and TYPE II error before and after prewhitening with different
standard deviations

In Table 6, simulated data demonstrate that all the rate of TYPE I error reduces dramat-
ically after prewhitening. However, the rate of Type II error increases after prewhitening. As
the standard deviations rising, the rate of TYPE II error is increasing. This example shows
that by using the prewhitening technique, we can effectively correct the chance of making
TYPE I error to our significant level, 0.05, and make a more reliable decision base on the
existed data set.

5 Discussion

In conclusion, it is complicated to determine the true relationship of two time series that
are themselves autocorrelated because the degrees of freedom is related to the number of
independent observations, especially with a small sample size. When all assumptions of
regression are satisfied, the probability of making the wrong decision when the null hypothesis
is correct should be at most 5 percent, our assumed significant level. In particular, from Table
5 and Table 6 in Simulated Data, we can see the TYPE I error rates for simulated data are
between 33 percent and 48 percent, which is way beyond our expected 5 percent significance
level. Any prediction with this level of TYPE I error rates is not useful for future forecasting.
One way to solve this dilemma is to use the prewhitening technique in time series analysis.

The method of prewhitening can effectively correct the rate of TYPE I errors to a specified
significant level rate at the expense of increasing the TYPE II error rate. Type I errors happen
when we determine a correlation is significant when in reality it is not. Type II errors occur
when we fail to identify a significance relationship when it actually exists. In other words,
we correct the rate of making wrong predictions with an increasing rate of ignoring true
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relationships. One of the ultimate goals for statistics is to find the correlation between two
variables. The trade-off that we made in prewhitening with TYPE I error to TYPE II error
is valuable because it is better to miss a significant relationship than found a relationship
with a high probability of false positive. By doing so, we gain more control of error rate in
terms of predicting and forecasting.

However, the application of prewhitening also has many limitations. One primary limi-
tation is the striking increased in TYPE II errors. TYPE II errors depend mainly on sample
size and population variance. In the case of a larger sample size, this limitation will be auto-
matically avoided. In the case of a smaller sample size, we will have a much higher chance of
committing TYPE II errors. In other words, it becomes very likely for us to ignore the actual
relationship between the time series data. In Table 5, we say the rate of TYPE II error after
prewhitening is 0.67 for sample size 30 and 0.378 for sample size 60. Any conclusion with
this level of TYPE II error is not convincing. We are back in a quandary again.

One way to solve the plight is to choose a larger sample size and correctly use the technique
of prewhitening. Correlation does not mean causation. To further diagnose time series and
obtain significant information from them, we need to learn more modeling techniques, such
as financial time series and spectral analysis. However, from this paper, we learn that the
use of Ordinary-Least Regression for autocorrelated time series objects is often doubtful due
to the fact that the second assumption of regression often violated. The reason is the degrees
of freedom is related to the number of independent observations. We can effectively correct
our likelihood of having a spurious relationship to the anticipated significant level for some
time series data using Time Series Modeling and Prewhitening with large sample sizes.

6 Appendix A: R codes for Section 3

1 ################
2 # Ana l y s i s f o r t h e r e l a t i o n s h i p between Temperature
3 # us ing r e g r e s s i o n and t ime s e r i e s a n a l y s i s .
4 # Author : Yang Tang ( tangy32@uw . edu )
5 ################
6
7 # c l e a r encironment
8 rm( l i s t=l s ( ) )
9 #i n s t a l l TSA

10 l ibrary (TSA)
11 # Import t h e data
12 raw data <− read . csv ( ”PRSA data 2010 .1 .1 −2014 .12 .31 . csv ” )
13 # Dec lare a new v a r i a b l e e ve ry t ime we do t h i s l oop
14 monthly data <− c ( )
15 ## Using f o r l oop to c a l c u l a t e t h e monthly mean f o r
16 # pm2 .5 and t empe ra t u r e f o r each month .
17 #For each year in 2010 to 2014
18 for ( i in 2010:2014){
19 # For each month
20 for ( j in 1 :12){
21 monthly data$pm2.5 <− append(monthly data$pm,mean( raw data$pm2.5
22 [which ( raw data$month == j & raw data$year == i ) ] ,
23 na .rm = TRUE))
24 monthly data$ temperature <− append(monthly data$temperature ,mean(
25 raw data$TEMP[which ( raw data$month == j & raw data$year == i ) ] ,
26 na .rm = TRUE))
27 monthly data$year <− append(monthly data$year , i )
28 monthly data$month <− append(monthly data$month , j )
29 }
30 }
31
32 # Put th e data i n t o a data frame
33 monthly data . df<−data . frame (pm2.5=monthly data$pm,
34 temperature=monthly data$temperature ,
35 year=monthly data$year ,
36 month=monthly data$month)
37
38 # Dec lear them as Time−S e r i e s Va r i a b l e s .
39 # It ’ s t h e e x a c t l y same data w i th t h e data frame . For d i f f e r e n t purpose in terms o f g raph ing .
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40 monthly ts <− ts (monthly data . df , start=c (2010 ,1 ) , end=c (2014 ,12) , frequency=12)
41 pm ts <− ts (monthly data$pm, start=c (2010 ,1 ) , end=c (2014 ,12) , frequency=12)
42 temperature ts <− ts (monthly data$temperature , start=c (2010 ,1 ) , end=c (2014 ,12) , frequency=12)
43
44 # Plo t monthly t empera ture and PM2.5 as t ime s e r i e s .
45 par (mfrow=c ( 1 , 1 ) )
46 plot (pm ts , y lab =”PM2.5 ” , xlab = ”Year” , type = ” l ” )
47 points (pm ts , x = time (pm ts ) , pch = as . vector ( season (pm ts ) ) , cex = 0 . 7 )
48 plot ( temperature ts , y lab =”Temperature” , xlab = ”Year” , type = ” l ” )
49 points ( temperature ts , x = time ( temperature ts ) , pch = as . vector ( season ( temperature ts ) ) , cex = 0 . 7 )
50
51 # Use lm f un c t i o n in R to f i t a s imp l e l i n e a r r e g r e s s i o n model
52 # pm2 .5 i s t h e re sponse v a r i b l e , t empera ture i s t h e p r e d i c a t o r v a r i a b l e .
53 pm. lm <− lm(pm2.5˜temperature , data = monthly data )
54
55 # Create a t a b l e to d i s p l a y t h e r e s u l t f o r t h e p r e v i o u s l i n e a r model .
56 pm. c i = con f i n t (pm. lm)
57 summary . tab = data . frame ( Estimate = round(pm. lm$coef f ic ients , 2 ) ,
58 StandardError = round(summary(pm. lm)$coef f i c ients [ , 2 ] , 2 ) ,
59 Pvalue = round(summary(pm. lm)$coef f i c ients [ , 4 ] , 2 ) ,
60 Lower95 = round(pm. c i [ , 1 ] , 2 ) ,
61 Upper95 = round(pm. c i [ , 2 ] , 2 ) )
62 row .names(summary . tab ) = c ( ” In t e r c ep t ” , ”Temperature” )
63 col .names = c ( ”Estimate ” , ”Standard Error ” , ”P−value ” ,
64 ”Lower 95% Confidence Bound” ,
65 ”Upper 95% ConfidenceBound” )
66 kn i t r : : kable (summary . tab )
67
68 # Perform r e s i d u a l a n a l y s i s
69 par (mfrow=c ( 2 , 2 ) )
70 ac f (pm. lm$residuals , main = ”ACF of Res idua l s o f the Regress ion Model” , cex . lab =0.9 , cex . axis=0.9 , cex . main=0.9 , cex . sub=0.9)
71 plot (pm. lm$residuals , y lab = ” Res idua l s ” )
72 abline (h=0)
73 hist (pm. lm$residuals ,
74 xlab = ” Standar idz i ed Res idua l s ” , main = ”Histogram” )
75 qqnorm(pm. lm$residuals )
76 qqline (pm. lm$residuals )
77
78 # Plo t t h e PACF graph
79 par (mfrow=c ( 1 , 1 ) )
80 pacf (pm. lm$residuals , main = ”PACF of Res idua l s o f the Regress ion Model” ,
81 cex . lab =0.9 , cex . axis=0.9 , cex . main=0.9 , cex . sub=0.9)
82
83 # Plo t t h e CCF f o r t empera ture and PM2.5
84 tp=ts . intersect ( temperature ts ,pm ts )
85 c c f ( as .numeric ( tp [ , 1 ] ) , as .numeric ( tp [ , 2 ] ) ,
86 main=’The sample CCF of Temperature and Pm2.5 ’ , ylab=’CCF ’ )
87
88 # Sample ACF and PACF o f t empera ture .
89 par (mfrow=c ( 1 , 1 ) )
90 ac f ( as . vector ( temperature ts ) , l ag .max = 30 , main = ”ACF of temperature ( c e l s i u s ) ” )
91
92 # Generate ACF graph a f t e r d i f f e r e n t t ype o f d i f f e r e n c i n g
93 tp . d i f 1=ts . intersect ( d i f f ( temperature ts ) , d i f f (pm ts ) )
94 tp . d i f 2=ts . intersect ( d i f f ( temperature ts , 1 2 ) , d i f f (pm ts , 1 2 ) )
95 tp . d i f 3=ts . intersect ( d i f f ( d i f f ( temperature ts , 1 2 ) ) , d i f f ( d i f f (pm ts , 1 2 ) ) )
96 ac f ( as . vector ( tp . d i f 1 [ , 1 ] ) , l ag .max = 20 , main = ”After 1 th order o f d i f f e r e n c i n g ” )
97 ac f ( as . vector ( tp . d i f 2 [ , 1 ] ) , l ag .max = 20 , main = ”After 1 th order o f s ea sona l d i f f e r e n c i n g ” )
98 ac f ( as . vector ( tp . d i f 3 [ , 1 ] ) , l ag .max = 20 , main = ”After 1 th order o f d i f f e r e n c i n g and 1th order o f s ea sona l d i f f e r e n c i n g ” )
99

100 # PACF a f t e r 1 th order o f s e a s ona l d i f f e r e n c i n g
101 par (mfrow=c ( 1 , 2 ) )
102 pacf ( as . vector ( tp . d i f 2 [ , 1 ] ) , l ag .max = 20 , main = ”PACF: After 1 th order o f s ea sona l d i f f e r e n c i n g ” )
103
104
105 ############Create t h e t a b l e o f AIC f o r d i f f e r e n t s e s ona l ARIMA model #################
106 # The lower t h e AIC , t h e b e t t e r .
107 # ARIMA (0 ,0 , 1 )
108 mo. temp 001 010 = arima (monthly ts [ , 2 ] , order = c ( 0 , 0 , 1 ) ,
109 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
110 mo. temp 001 011 = arima (monthly ts [ , 2 ] , order = c ( 0 , 0 , 1 ) ,
111 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
112 mo. temp 001 110 = arima (monthly ts [ , 2 ] , order = c ( 0 , 0 , 1 ) ,
113 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
114 mo. temp 001 111 = arima (monthly ts [ , 2 ] , order = c ( 0 , 0 , 1 ) ,
115 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
116 a ic001 = c (mo. temp 001 010$aic ,mo. temp 001 011$aic , mo. temp 001 110$aic ,mo. temp 001 111$ a i c )
117
118
119 # ARIMA (1 ,0 , 0 )
120 mo. temp 100 010 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 0 ) ,
121 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
122 mo. temp 100 011 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 0 ) ,
123 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
124 mo. temp 100 110 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 0 ) ,
125 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
126 mo. temp 100 111 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 0 ) ,
127 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
128 a ic100 = c (mo. temp 100 010$aic , mo. temp 100 011$aic , mo. temp 100 110$aic ,mo. temp 100 111$ a i c )
129
130 # ARIMA (1 ,0 , 1 )
131 mo. temp 101 010 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 1 ) ,
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132 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
133 mo. temp 101 011 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 1 ) ,
134 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
135 mo. temp 101 110 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 1 ) ,
136 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
137 mo. temp 101 111 = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 1 ) ,
138 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
139 a ic101 = c (mo. temp 101 010$aic ,mo. temp 101 011$aic , mo. temp 101 110$aic ,mo. temp 101 111$ a i c )
140
141 # ARIMA (0 ,1 , 1 )
142 mo. temp 011 010 = arima (monthly ts [ , 2 ] , order = c ( 0 , 1 , 1 ) ,
143 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
144 mo. temp 011 011 = arima (monthly ts [ , 2 ] , order = c ( 0 , 1 , 1 ) ,
145 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
146 mo. temp 011 110 = arima (monthly ts [ , 2 ] , order = c ( 0 , 1 , 1 ) ,
147 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
148 mo. temp 011 111 = arima (monthly ts [ , 2 ] , order = c ( 0 , 1 , 1 ) ,
149 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
150 a ic011 = c (mo. temp 011 010$aic , mo. temp 011 011$aic , mo. temp 011 110$aic ,mo. temp 011 111$ a i c )
151
152 # ARIMA (1 ,1 , 0 )
153 mo. temp 110 010 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 0 ) ,
154 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
155 mo. temp 110 011 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 0 ) ,
156 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
157 mo. temp 110 110 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 0 ) ,
158 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
159 mo. temp 110 111 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 0 ) ,
160 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
161 a ic110 = c (mo. temp 110 010$aic , mo. temp 110 011$aic , mo. temp 110 110$aic ,mo. temp 110 111$ a i c )
162
163 # ARIMA (1 ,1 , 1 )
164 mo. temp 111 010 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 1 ) ,
165 s ea sona l = l i s t (order=c ( 0 , 1 , 0 ) , per iod =12))
166 mo. temp 111 011 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 1 ) ,
167 s ea sona l = l i s t (order=c ( 0 , 1 , 1 ) , per iod =12))
168 mo. temp 111 110 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 1 ) ,
169 s ea sona l = l i s t (order=c ( 1 , 1 , 0 ) , per iod =12))
170 mo. temp 111 111 = arima (monthly ts [ , 2 ] , order = c ( 1 , 1 , 1 ) ,
171 s ea sona l = l i s t (order=c ( 1 , 1 , 1 ) , per iod =12))
172 a ic111 = c (mo. temp 111 010$aic , mo. temp 111 011$aic , mo. temp 111 110$aic ,mo. temp 111 111$ a i c )
173
174
175 mo. df<−data . frame ( aic001 , aic100 , aic101 , aic011 , aic110 , a i c111 )
176 row .names(mo. df ) = c ( ” Seasonal (0 , 1 , 0 ) ” , ” Seasonal (0 , 1 , 1 ) ” , ” Seasonal (1 , 1 , 0 ) ” , ” Seasonal (1 , 1 , 1 ) ” )
177 colnames (mo. df ) = c ( ”ARIMA(0 ,0 , 1 ) ” , ”ARIMA(1 ,0 , 0 ) ” , ”ARIMA(1 ,0 , 1 ) ” ,
178 ”ARIMA(0 ,1 , 1 ) ” , ”ARIMA(1 ,1 , 0 ) ” , ”ARIMA(1 ,1 , 1 ) ” )
179
180 kn i t r : : kable (round(mo. df , d i g i t s =2))
181
182 ################################################################
183
184
185 tp . d i f=ts . intersect ( d i f f ( d i f f ( temperature ts , 1 2 ) ) , d i f f ( d i f f (pm ts , 1 2 ) ) )
186 tp . d i f 2=ts . intersect ( d i f f ( temperature ts , 1 2 ) , d i f f (pm ts , 1 2 ) )
187
188 # Use the b u i l d in prewh i t en f un c t i o n in R wi th t h e b e s t model we s e l e c t .
189 # We perform the p r ewh i t en i n g w i th s e a s ona l ARIMA model (1 , 0 , 0 ) ∗ ( 0 , 1 , 1 ) .
190 prewhiten ( as .numeric ( tp . d i f 2 [ , 1 ] ) , as .numeric ( tp . d i f 2 [ , 2 ] ) ,
191 x .model = arima (monthly ts [ , 2 ] , order = c ( 1 , 0 , 0 ) , s ea sona l =
192 l i s t (order=c ( 0 , 0 , 1 ) , per iod =12)) ,main = ”ARIMA(1 ,0 , 0 ) ∗ Seasonal (0 , 1 , 1 ) ” )

7 Appendix B: R codes for Section 4

1 ################
2 # s imu l a t e ARIMA and t e s t c c f
3 # Author : Dr . Maureen Kennedy (mkenn@uw . edu )
4 # and Yang Tang ( tangy32@uw . edu )
5 ################
6
7 rm( l i s t=l s ( ) ) # c l e a r environment
8 l ibrary (TSA) # import t h e TSA l i b r a r y
9

10 nsim=100 # repea t nsim t imes
11
12 #Sample S i z e
13 sd = 0.1
14 n sequence <− c (30 ,60 ,300 ,500 ,1000)
15 sim data n <− c ( )
16 sim data n$type1 . e r r o r <− rep (0 , 5 )
17 sim data n$type2 . e r r o r <− rep (0 , 5 )
18 sim data n$type1 . e r r o r . a f t e r <− rep (0 , 5 )
19 sim data n$type2 . e r r o r . a f t e r <− rep (0 , 5 )
20
21 for ( k in 1 :5 ){
22 # each o f t h i s i s a f l a g t h a t t a k e s
23 # a va l u e 1 i f t h e n u l l i s r e j e c t e d , 0 o t h e rw i s e
24 r e j e c t . h0<−rep (0 , nsim ) # sample
25 r e j e c t 2 . h0<−rep (0 , nsim ) # true r e l a t i o n s h i p
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26 r e j e c t 3 . h0<−rep (0 , nsim )
27 r e j e c t 4 . h0<−rep (0 , nsim )
28
29 #This s e t t h e s tandard d e v i a t i o n
30 ts s i z e = n sequence [ k ]
31
32 for ( i in 1 : nsim ) {
33
34 tmp . simx<−arima . sim (n=ts s i z e , l i s t ( ar =0.89 ,ma=−0.25) ,sd=0.1)
35 # one arima (1 ,1 , 0 ) proces s , o f l e n g t h 60
36 tmp . simy<−arima . sim (n=ts s i z e , l i s t ( ar =0.89 ,ma=−0.25) ,sd=0.1)
37 # a second , independen t arima (1 ,1 , 0 ) proces s , o f l e n g t h 50
38 tmp . cor<−cor . t e s t (tmp . simx , tmp . simy )
39 # t e s t a s imp l e c o r r e l a t i o n between t h e s e two
40
41 # tmp . simx and temp . simy are two d i f f e r e n t t ime s e r i e s ,
42 # which shou l d have no r e l a t i o n s h i p .
43 # We shou l d accp t ed t h e NULL Hypo the s i s .
44 # When r e j e c t t h e True NULL hypo t h e s i s , we make TYPE 1 e r ro r .
45 i f (tmp . cor$p . value <=0.05) # i s i t s i g n i f i c a n t ?
46 r e j e c t . h0 [ i ]<−1
47
48 # tmp .2 simy i s s e t t o be t h e same time s e r i e s w i th by
49 # times 0 .5 and adding some random e r r o r s .
50 # We shou l d r e j e c t t h e NULL h y p o t h e s i s .
51 # When r e j e c t t h e NULL hypo t h e s i s , we made good d e c i s i o n .
52 # When f a i l t o r e j e c t t h e NULL po t h e s i s ,
53 # we made TYPE 2 e r ro r ( e qua l t o 1−POWER) .
54 tmp2 . simy<−tmp . simx∗0.5+10+rnorm( ts s i z e , 0 , 0 . 1 )
55 tmp2 . cor<−cor . t e s t (tmp . simx , tmp2 . simy )
56 i f ( tmp2 . cor$p . value <=0.05)
57 r e j e c t 2 . h0 [ i ]<−1
58
59 # We prewh i t en our data to f i n d out what i s t h e impact o f
60 # prewh i t en i n g in terms o f TYPE 1 and TYPE2 e r ro r
61
62 # r e j e c t 3 . h0 i s t h e r a t e o f TYPE 1 e r ro r a f t e r p r ewh i t en in g
63 tmp . pre1<−prewhiten (tmp . simx , tmp . simy , x .model =
64 arima (tmp . simx , order = c ( 1 , 0 , 1 ) ) , plot=FALSE)
65 i f (abs (tmp . pre1$ c c f [ 0 ] $ ac f )>1.96/sqrt ( ts s i z e ) )
66 r e j e c t 3 . h0 [ i ]<−1
67
68 # r e j e c t 4 . h0 i s t h e power a f t e r p r ewh i t en i n g
69 # 1−POWER i s t h e r a t e o f TYPE 2 e r r o r
70 tmp . pre2<−prewhiten (tmp . simx , tmp2 . simy , x .model =
71 arima (tmp . simx , order = c ( 1 , 0 , 1 ) ) , plot=FALSE)
72 i f (abs (tmp . pre2$ c c f [ 0 ] $ ac f )>1.96/sqrt ( ts s i z e ) )
73 r e j e c t 4 . h0 [ i ]<−1
74 }
75 sim data n$type1 . e r r o r [ k ] <− sum( r e j e c t . h0 )/nsim
76 sim data n$type2 . e r r o r [ k ] <− (1−sum( r e j e c t 2 . h0 )/nsim )
77 sim data n$type1 . e r r o r . a f t e r [ k ] <− sum( r e j e c t 3 . h0 )/nsim
78 sim data n$type2 . e r r o r . a f t e r [ k ] <− (1−sum( r e j e c t 4 . h0 )/nsim )
79
80 }
81
82 ##########################################################
83 # Standard d e v i a t i o n
84 ts s i z e = 60
85 sd sequence <− c (0 . 0001 , 0 .001 , 0 . 01 , 0 . 1 , 0 . 2 , 1 )
86 sim data sd <− c ( )
87 sim data sd$type1 . e r r o r <− rep (0 , 6 )
88 sim data sd$type2 . e r r o r <− rep (0 , 6 )
89 sim data sd$type1 . e r r o r . a f t e r <− rep (0 , 6 )
90 sim data sd$type2 . e r r o r . a f t e r <− rep (0 , 6 )
91
92
93 for ( k in 1 :6 ){
94 # each o f t h i s i s a f l a g t h a t t a k e s
95 # a va l u e 1 i f t h e n u l l i s r e j e c t e d , 0 o t h e rw i s e
96 r e j e c t . h0<−rep (0 , nsim ) # sample
97 r e j e c t 2 . h0<−rep (0 , nsim ) # true r e l a t i o n s h i p
98 r e j e c t 3 . h0<−rep (0 , nsim )
99 r e j e c t 4 . h0<−rep (0 , nsim )

100
101 # This s e t s t h e s tandard d e v i a t i o n .
102 sd = sd sequence [ k ]
103
104 for ( i in 1 : nsim ) {
105
106 tmp . simx<−arima . sim (n=ts s i z e , l i s t ( ar =0.89 ,ma=−0.25) ,sd = 0 .1 )
107 # one arima (1 ,1 , 0 ) proces s , o f l e n g t h 60
108 tmp . simy<−arima . sim (n=ts s i z e , l i s t ( ar =0.89 ,ma=−0.25) ,sd = 0 .1 )
109 # a second , independen t arima (1 ,1 , 0 ) proces s , o f l e n g t h 50
110 tmp . cor<−cor . t e s t (tmp . simx , tmp . simy )
111 # t e s t a s imp l e c o r r e l a t i o n between t h e s e two
112
113 # tmp . simx and temp . simy are two d i f f e r e n t t ime s e r i e s ,
114 # which shou l d have no r e l a t i o n s h i p .
115 # We shou l d accp t ed t h e NULL Hypo the s i s .
116 # When r e j e c t t h e True NULL hypo t h e s i s , we make TYPE 1 e r ro r .
117 i f (tmp . cor$p . value <=0.05) # i s i t s i g n i f i c a n t ?
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118 r e j e c t . h0 [ i ]<−1
119
120 # tmp .2 simy i s s e t t o be t h e same time s e r i e s w i th by
121 # times 0 .5 and adding some random e r r o r s .
122 # We shou l d r e j e c t t h e NULL h y p o t h e s i s .
123 # When r e j e c t t h e NULL hypo t h e s i s , we made good d e c i s i o n .
124 # When f a i l t o r e j e c t t h e NULL po t h e s i s ,
125 # we made TYPE 2 e r ro r ( e qua l t o 1−POWER) .
126 tmp2 . simy<−tmp . simx∗0.5+10+rnorm( ts s i z e , 0 , sd )
127 tmp2 . cor<−cor . t e s t (tmp . simx , tmp2 . simy )
128 i f ( tmp2 . cor$p . value <=0.05)
129 r e j e c t 2 . h0 [ i ]<−1
130
131 # We prewh i t en our data to f i n d out what i s t h e impact o f
132 # prewh i t en i n g in terms o f TYPE 1 and TYPE2 e r ro r .
133
134 # r e j e c t 3 . h0 i s t h e r a t e o f TYPE 1 e r r o r a f t e r p r ewh i t en i n g
135 tmp . pre1<−prewhiten (tmp . simx , tmp . simy ,
136 x .model = arima (tmp . simx , order = c ( 1 , 0 , 1 ) ) ,
137 method=”ML” , plot=FALSE)
138 i f (abs (tmp . pre1$ c c f [ 0 ] $ ac f )>1.96/sqrt ( ts s i z e ) )
139 r e j e c t 3 . h0 [ i ]<−1
140
141 # r e j e c t 4 . h0 i s t h e power a f t e r p r ewh i t en i n g
142 # 1−POWER i s t h e r a t e o f TYPE 2 e r r o r
143 tmp . pre2<−prewhiten (tmp . simx , tmp2 . simy ,
144 x .model = arima (tmp . simx , order = c ( 1 , 0 , 1 ) ) ,
145 method=”ML” , plot=FALSE)
146 i f (abs (tmp . pre2$ c c f [ 0 ] $ ac f )>1.96/sqrt ( ts s i z e ) )
147 r e j e c t 4 . h0 [ i ]<−1
148 }
149 sim data sd$type1 . e r r o r [ k ] <− sum( r e j e c t . h0 )/nsim
150 sim data sd$type2 . e r r o r [ k ] <− (1−sum( r e j e c t 2 . h0 )/nsim )
151 sim data sd$type1 . e r r o r . a f t e r [ k ] <− sum( r e j e c t 3 . h0 )/nsim
152 sim data sd$type2 . e r r o r . a f t e r [ k ] <− (1−sum( r e j e c t 4 . h0 )/nsim )
153
154 }
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